
International Journal of Theoretical Physics, Vol. 18, No. 3, 1979 

Geometric Quantization and Internal Symmetry 

D. J. R. Lloyd-Evans 

45C Corsica Street, London N5 1JT England 

Received July 19, 1978 

As a part of an attempt to geometrize physics, internal symmetries in the 
covariant classification of matter by its T,~ type are considered in relation 
to phase transformations generated by complex and quaternionic structures 
on space-time. The Rainich theory of electromagnetism and neutrinos is 
compared with the theory of U(1) x SO(l, 3) torsional gauge fields, and 
extended to the quaternionic case. It is shown by the Kostant technique of 
geometric quantization that complex and quaternionic phase transforma- 
tions for an Einstein space are associated with one-dimensional and three- 
dimensional harmonic oscillators. 

1. I N T R O D U C T I O N  

This paper extends an attempt to see how much of quantum physics can 
be geometrized (Lloyd-Evans, 1976a, b, 1977, 1978) to consideration of the 
role of T.v and its symmetries (Plebanski, 1964) in geometric quantization. In 
considering the physical significance of these symmetries Plebanski's use of  
generalized duality rotations of  U.v -- T.v - 1 4Tc~ guy to define formal electro- 
magnetic fields is regarded as an extension of the Rainich unification of 
gravity and electromagnetism, and Rainich theory is compared in Section 2 
with the gauge theory of electromagnetic and weak interactions, emphasizing 
the nonuniqueness of the former and tentatively suggesting modification to 
the latter. 

The U(3) generalization of Rainich theory is then compared in Section 3 
with the theory of quaternionic phase transformations, and in Section 4 
Kostant 's  approach to quantization (Kostant, 1970a, b; Simms and Wood- 
house, 1976) applied to this situation gives an outline resemblance to string 
theory. 

An essential feature of this geometric approach is a major departure 
from current practice in physics by classifying matter in terms of the T,~ 
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type and representations of its symmetry group and of the homogeneous 
Lorentz group. Thus, rather than calculate T,~ by the methods of Lagrangian 
quantum field theory for Poincar6 covariant matter types, physical T,v 
together with its geometric interpretation via the Einstein tensor G.v is the 
starting point of the classification scheme. Use of the T.v classification appears 
to require an unconventional method of quantization, this work being part 
of such an approach, with added motivation coming from the absence of a 
global Fourier decomposition of fields over curved space-time and the lack 
of a local definition of the energy-momentum vector P~. 

The basic requirements of the geometric quantization scheme considered 
previously by the author (1976b) are the existence of a complex structure J 
and of a symmetric second-rank tensor on space-time that is Hermitian with 
respect to J. The complex structure used corresponds to that which appears 
in the definition of two-component spinors, and defines a reduction GL(4, R)/ 
GL(2, C) of the bundle of general linear frames to that of complex linear 
frames, whilst the complex scale factor defines a further reduction to SL(2, C) 
null frames (and spin frames up to a sign). After a Wick rotation, this complex 
structure, together with a phase rotation generated by itself, determines the 
conformal structure of space-time. In particular, the metric tensor g.~ is 
Hermitian with respect to this choice of complex structure, and this leads to a 
finite-dimensional application of Segal's method (Segal. 1960) to define 
creation and annihilation operators for vectors and spinors. 

Ordinary relativistic quantum mechanics is described geometrically by 
systems of imprimitivity for the structure group ~4 (~) SL(2, C) of the bundle 
of affine spin frames, and this was shown (Lloyd-Evans, 1979) to lead to the 
coupling of matter to geometry by means of preferred affine frames, and to 
the existence of a gravitational field obeying the Einstein-Cartan field equa- 
tions. In addition to the GL(4, R) group of linear frame transformations, a 
second GL(4, JR) group appears at this stage, namely that of infinitesimal 
coordinate transformations, which is associated geometrically with the 
inhomogeneous part of the general affine connection. The momentum vector 
P. of a free particle determines a preferred coordinate frame, but once the 
existence of gravity has been shown, the Poincar6 invariant description of 
matter ceases to be sufficiently general. If the Plebanski classification of T,~ 
is adopted instead, then it is apparent that free quantum mechanical particles 
correspond only to the highly specialized types [T-3S](2~ for massive particles, 
and [4N](2~ for massless. 

The generalization of the energy-momentum vector P, of a massive 
particle in flat space to curved space is an eigenvector of T.~ pointing in the 
same direction; and in Section 2 of this paper the Plebanski classification of 
T.~ is used to show how this tensor determines a vierbein field, and how this 
is related to the complex structure J. This leads to the possibility of three 
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linearly independent complex structures in the case [T-3S]~2~, and to a com- 
parison of J-phase transformations with duality transformations, making 
particular reference to the relationship between the U(1) gauge theory of 
electromagnetism and Rainich theory. This emphasizes the distinction 
between contributions to electromagnetism of types [2T-2S]<~ and [4N]~2~, 
of which the latter has a torsional nature. In this interpretation, J is the 
generator of U(1) electromagnetic gauge transformations in opposite direc- 
tions on the left- and right-handed spinor spaces, with similar transforma- 
tions, but in the same sense, generated by 75 as the spinor analogs of duality 
transformations. 

In Section 3, the phase transformations are related to the properties of 
almost quaternionic and quaternionic structures, and the physical and 
geometric significance of the U(3) group of duality transformations is dis- 
cussed, with a brief reference to a relationship with instantons and global 
topology. 

The geometric approach to quantization is completed by Kostant's 
method of quantizing real valued scalar functions on a symplectic manifold. 
In the present case this employs the line bundle with structure group GL(2, C)/ 
SL(2, C) ~ C* and curvature form given by the contraction of the Ricci 
curvature with the complex structure tensor. For the space-time application, 
this approach is equivalent to that of Segal for the special case of Einstein 
spaces; but more generally a distorted coordinate basis is involved. Section 4 
of this paper outlines the Kostant technique, and shows how duality rotations 
transform particle states into antiparticle states, and how a stringlike spectrum 
appears in geometric quantization. 

2. DUALITY ROTATIONS 

The central feature in the relation of T~v to internal symmetry is the 
classification of T~v itself by its eigenvectors (Plebanski, 1964; Petrov, 1969). 
Adopting Plebanski's notation there are four types of T~v denoted by 
[Ao-Al-,~a-,~3]~, where Aa for 0 ~< a ~< 3 are the eigenvalues of T~v and n is 
the degree of the minimal polynomial. If complex eigenvalues are denoted by 
Z, real eigenvalues whose eigenspaces contain timelike eigenvectors by T, 
real eigenvalues with null but not timelike eigenvectors by N, and real eigen- 
values with only spatial eigenvectors by S, then the four types of T~v are 
[T-$1_-$2-$3]~4), [Z-Z-S1-S2]~4), [2N-$1-S~]~4~, and [3N-S]~4) each of which gives 
rise to degenerate subtypes when two or more of the distinct eigenvalues are 
equal. This scheme is not quite unique, but has been related to such a scheme 
in terms of Lorentz orbits by Collinson and Shaw (Collinson and Shaw, 
1972). If the validity of Einstein's field equation 

Ruv - �89 = kTuv (2.1) 
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is assumed, then the geometric significance of the eigenvalues is that they 
determine the principal curvatures of the Einstein tensor, whilst their sum 
determines the scalar curvature. 

The flat-space, free Poincar6 covariant quantum mechanical particle 
approach to the coupling of matter to geometry by preferred frames (Lloyd- 
Evans, 1979) involves the type [T-3S]~2~ for massive particles and the incom- 
pletely diagonalizable case [4N](2~ for massless particles. In each case the 
energy-momentum vector P.  is an eigenvector, and in the massive case, 
therefore, T.v is diagonalized by being put in its rest frame; the three spatial 
eigenvalues are each zero, whilst the timelike eigenvalue T is given by the 
mass-energy density p, and the S 0 ( 3 ,  R) little group freedom is replaced by a 
corresponding freedom of choice of spatial eigenvectors. 

Because these are degenerate members of the families [T -S1 -S2 -S2] (~  and 
[2N-$1-$2]~4>, attention will be concentrated on these two in quoting Pleban- 
ski's results on how T.v determines the vierbein. In the former case the four 
eigenvectors V% 0 ~< a ~ 3, constitute an orthonormal tetrad and hence a 
16-component vierbein L. ~ such that 

Lu a - -  V, a (2.2) 

g . v  = L u ~ L ~  (2.3) 

Tuv = T L u ~  ~ - S 1 L . ~ L v  ~ - S2Lu~Lv  ~ - SaLuaL~ a (2.4) 

where V. ~ is the t~th component of the eigenvector V ~, g.~ is the metric tensor, 
and ~b the Minkowski metric. For [2N-S~-$2]~4~ the two spatial eigenvectors 
determine vierbein components in a similar way, but the double eigenvalue N 
has only one eigenvector t., which must be a null vector and can be expressed 
as t. = �89 ~ + L.a). The remaining vector spanning the vectorial subspace 
of the eigenvector N is any linear combination of t~ and of s. --- �89 ~ - L~ a) 
and can be chosen as .s. with e = + 1. when T.. becomes 

Tu~ = 2e t . t v  + N L . ~  ~ - N L ~ 3 L v  3 - S 1 L . 1 L ~  1 - S 2 L . 2 L v  2 (2.5) 

The complex structure tensor J is determined by eight of the ten com- 
ponents of the pseudosymmetric vierbein [L.~}, which is related to the 16- 
component vierbein L.v by 

L .  '~ = { L f } O b  '~ (2.6) 

where Ob ~ is a Lorentz vierbein rotation defined in the space of eigenvectors. 
The condition of pseudosymmetry (Isham et al., 1970), i.e., 

imposes a unique relationship between coordinates and frames that eliminates 
the freedom of vierbein rotations. Physically, J is the generator of phase 
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transformations of  spinors and of simultaneous rotations in the l -  n and 
m - ~ planes of the null tetrad (l., m., ~ . ,  n.) defined through 

L.  ~ = l. +n~ ,  L. 3 = l ~ - n .  
(2.7) 

Lu 1 = m. + mu, L.  2 = i(m u - r~.) 

and one of the further aims of this section is to consider its relation to 
electromagnetic gauge transformations. Before doing so, however, we 
examine the degenerate case [T-3S]c2 ~ for which spatial eigenvalues are equal; 
in this case Plebanski showed that the vierbein L~ ~ is no longer unique and 
instead is defined only up to an arbitrary rotation O~ ~ e S0(3, ~) in the space 
of spatial eigenvectors. Inverting (2.7) to obtain the null tetrad shows that 
there is a similar S0(3, R) indeterminacy in the choice of  J and this situation 
for a 4n-dimensional manifold is characterized geometrically as the existence 
of an almost quaternionic structure, and the consequences of  this will be 
considered in the next section. 

In order to investigate the possible electromagnetic phase interpretation 
of the J phase, T~v is split into its trace and trace-free part  U.v = T.~ - 
1 a +T~ g.~, which determines the tensor analog of the Penrose curvature spinor 
CABO+5, 1 ~< A, B, C, D ~< 2. Plebanski showed that this could be expanded 
in terms of a basis f iB,  1 ~< k < 3 for the space of symmetric spinor of  type 
(1, O) as 

8 

rbABOb = Z e"fkABf~b (2.8) 
k = l  

where the basis can be chosen so that % = 0, _+ 1 and the number of ek which 
are zero has an invariant significance as the dimension of the subspace 
annihilated under the antilinear transformation on the basis by ~ABCb 

* A'Bc~Ob %f~bfkObf ~AB (2.9) 
C D J  

Using the spin tensor S.A~ which maps antisymmetric tensors on R 4 onto the 
space C 3 of symmetric spinors and their complex conjugates, one may define 
a quantity f .~  by 

f ~  ~ABrk Sabr.k. (2.10) ~ "  ~ J u v J A B  "t- t tv  J C D  

from which may be defined three formal electromagnetic energy-momentum 
tensors E ~ :  

E ~  _ rk rk~, a,-, r k  rk,~z (2.11) 
- -  J l t h J v  - -  ~ 6 ! J v J c t B J  

Equations (2.8)-(2.11) enable the trace-free energy-momentum tensor to be 
expressed as the sum of three formal electromagnetic energy-momentum 
tensors: 

8 

cr.  = Z (2.12) 
k = l  
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The situation in which ek = + 3~ for one specific a, 1 ~< a ~< 3, is the 
case of Rainich theory, and there are two distinct T.~ types for which this 
occurs, namely [4N](2) and [2T-2S](2v The distinction between these two is 
Lorentz invariant, with the former giving null electromagnetism characterized 
by a Ricci tensor R.~ that is the product of null vectors k., 

R,~ = k . k ,  (2.13) 

and having only three linearly independent components as against the five of 
the general (latter) case, while the special case of self-dual electromagnetic 
fields has T,~ = 0. Of these three types, [4N](~) admits a direct interpretation 
as an electromagnetic wave propagating at the velocity of light (Misner and 
Wheeler, 1957) and it is this type which occurs in the Poincar6 covariant 
geometric coupling scheme, but the interpretation of T.v of type [4N]<2) as 
due to electromagnetism is therefore not unique, in particular, 2-component 
neutrinos can contribute (Inomata and McKinley, 1971), while parity- 
conserving 4-component neutrinos also give type [2T-2S]<2) (Inomata and 
McKinley, 1965), and one might speculate that this distinction is relevant 
to the parity problems of the Weinberg-Salam theory of weak and electro- 
magnetic interactions as applied to atomic transitions. For Rainich theory the 
electromagnetic field (respectively, neutrino field) is only defined up to a 
duality transformation e *~ (respectively, y5 transformation) by equation (2.11) 
and for [T-3S](2~ only up to a generalized duality rotation belonging to U(3) 
(Plebanski, 1964), and to interpret these results it is necessary to consider 
the relation between duality and phase transformations. 

For electromagnetism there are a priori four kinds of U(1) transforma- 
tions to be considered in this context: 

1. The duality rotations of electromagnetism 

where 

or in spinor form 

where 

F.~ ~ *F.~ sin ~ + F~ cos (2.14) 

*F.~ 1 r'~a (2.15) ---~ ~E~cAtz wt 

cpaB --> e%pAB (2.16) 

= Su~epA B + SCD~eb F.~ AB (2.17) 

2. The phase rotations generated by the complex structure J used in the 
definition of spinors consistent with the null tetrad structure of equation 
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(2.7), for which J~" has the real representation 

0 - 1  

1 0 

0 0 

3. In quantum mechanics another set of phase transformations are 
generated by the complex structure tensor J~ of the 1-particle phase space with 
symplectic form f2 ~ = d p  /x dq, where j1 is related to s through the fact 
that infinitesimal symplectic transformations, A, satisfy 

A t J  1 + J 1 A  = 0 

where A t is the transpose of A, whereas complex transformations satisfy 

A J  1 + J 1 A  = 0 

This complex structure tensor j1 is the real representation on N8 phase space 
of the pure imaginary number (i) appearing in the representation exp (ipq) 

of the transformation group N4 
4. The U(1) phase invariance of electromagnetic gauge theories. Of 

these, (4) was originally introduced by Weyl in relation to the phase in- 
variance of quantum mechanical matrix elements, which when applied to 
the Dirac equation entailed the replacement of the ordinary derivative ~u by 
the covariant derivatives c~, - ieAu, where the gauge field is interpreted as 
electromagnetism. In the original argument the phase transformation was 
applied to a Dirac spinor, and subsequently the geometric significance of 
such transformations together with the physical meaning of (i) have been 
investigated by Hestenes (1967, 1975). That investigation showed that the 
factor (i) used in defining complex 4-component spinors could be represented 
in the real Dirac algebra by 75, while the similar factor, denoted (i'), appearing 
in the definition of 2-component spinors is the pseudoscalar of the Pauli 
algebra. Furthermore, he showed that with these definitions the factor (i) in 
the plane wave states exp ( ipx) is i~a, where ea -= ~'0~'3, as also is the factor 
(i) in the electromagnetic covariant derivative, so that in the real Dirac algebra 
both the electromagnetic phase transformations and the rotations of the 
1-particle phase space in (3) above are generated by 7'1 a y2 or, equivalently, 
by i~,o /x ~'a- Geometrically such phase transformations are represented by 
rotations in the null planes of the light cone in terms of which the spinors are 
defined, and J generates simultaneous rotations through the same angle in 
both planes. 

An a priori alternative interpretation is to take U(1) as the group of 
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automorphisms of complex numbers consisting of phase rotations. If this 
group is used to extend the group D2 of rotations through ~r about the x, y, 
and z axes, then the Pauli 4-group of spin matrices together with phase 
rotation is the nontrivial extension, and the basis vector of the spin repre- 
sentation is geometrically described as a Cartan isotropic vector (x ~) whose 
two independent components (~1, ~2) are given by 

where 

~1 = [(x 1 + ix2)/2]z/2, ~2 = [(Xl _ ix2)/211/2 

8 

= o 
~ = i  

The phase angle 0 of the spinors is then given by 

0 = arctan (x2/x 1) 

If Lorentz boosts of velocity from 0 to c are included, a second spinor basis 
is obtained with phase corresponding to a hyperbolic rotation, conventionally 
in the 0-3 plane, and further addition of parity gives back the 7-matrix 
formalism. 

These results strongly suggest that the electromagnetic U(1) gauge 
invariance group should be described geometrically in terms of these spinor 
phase rotations, and so we consider the possibility of deriving the Ricci tensor 
of electromagnetism directly from the connection associated with J-phase 
invariance. J itself is a tensor field on space-time with antisymmetric coeffi- 
cients (Jx~) in an orthonormal basis, and the condition the (2(1) gauge field 
A. can be expressed in the usual form iA~ is that A. be an eigenfunction of J, 
i,e., J~,~A,: -- +/Ax, which means that A. is to be geometrically quantizable 
and so either holomorphic or antiholomorphic for Euclidean space or a future 
or pasting pointing null vector in Minkowski space, where the complexified 
spaces are two dimensional with (a + ib)X = (a + bJ)X;  a, b ~ R, X e R ~. 

The most general linear geometric connection I~. has the form 

P~,. = {~,.} + T~. + Q~. (2.18) 

where {~,.} are the pseudo-Riemannian connection coefficients, T~. is a 
torsional term, and Q~. is defined by 

Q~. = V ga. 

with V' denoting the total covariant derivative in (2,18). Because the metric 
is Hermitian with respect to J, it has zero J charge, and does not couple to the 
connection determined by the gauge field A., which can therefore only 
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belong to the torsional term in (2.18). For spinors, the coupling to A. will in 
general be nonzero and this is the connection noted previously for such 
objects by Fock (1929). The total Riemannian and Ricci curvatures, R~a and 
R.A are derived from their analogs KT.~ and K.a of the pseudo-Riemannian 
connection by 

R~A = K ~  + 2VEvT.> ~ + 2Tt,,I.j'~T.~> p (2.19) 

R,a = K~a + V~Tgv - V,T~a + T,~orf, a - T ~ T ~ a  (2.20) 

where the square brackets denote antisymmetrization, the notation [vlp ] �9 �9 .t x] 

indicates the exclusion of p from this antisymmetrization, and V denotes 
covariant derivation with respect to the {~,}. For J-phase transformations 
the torsion takes the form 

T~ .  = Jra.lA ~ - J J A a ~  + J'~tad.,,l (2.21) 

where JEx.~ correspond to the coefficients of the K~hler form g ( X ,  J Y ) ,  defined 
by Ja.~ = J,','~g,~.. In equation (2.19) it is the second term which takes the 
place of the electromagnetic field F~., and if only the electromagnetic connec- 
tion occurs, this reduces to the usual expression, but more generally the 
metric terms in (2.21) lead to nonvanishing of the quadratic torsion term. 
The electromagnetic U(1) gauge field, however, is not the only source of 
torsion, the other being the S O ( l ,  3) vierbein gauge field, and in general both 
have to be treated together, subject to the mutual consistency condition for a 
Hermitian space that the total covariant derivative of the complex structure 
tensor field Ja ~ vanishes. The limitations this imposes on the torsion have 
been considered by Yano (1965); here we note only that one of the special 
cases permitted is that of a complex semisymmetric connection, and that in 
this case R.a contains a contribution of the general form (S**Sa - S p S ~  

from the quadratic torsion term, where 

1 /r 1r S. = ~-[P~. - r.~] (2.22) 

If the torsion is covariant constant and S" a null vector, then this term gives 
directly the null Rainich form of electromagnetism (2.13). On the other hand, 
it is clear that the general electromagnetic energy-momentum tensor of type 
[2T-2S]~=~ does not arise directly from the gauge field but can only occur 
through the Ricci tensor for the symmetric part of  the connection; further- 
more in Inomata and McKinley's 2- and 4-component neutrino interpretation 
of [4N]~2~ and [2T-2S]~2~ types of T.~ it is shown that only the former can be 
related to a Heisenberg nonlinear spinor equation and hence to a torsional 
interpretation (Rodichev, 1961). 

In Rainich theory the electromagnetic field is only defined up to an 
arbitrary rotation, and conventionally a duality complexion a is chosen so 
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that the nonnull field is purely electric in a local Minkowski reference frame, 
in which case Maxwell's equations require that 

a, = %, (2.23) 

where 

a, =- (-g)I'%.~a~R~O:aR6~/Ro~R~ (2.24) 

in the general [2T-2S]~2~ case, while for [4N]r a. is not defined, and duality 
transformations rotate the polarization vector of the field about the direction 
of propagation, but in the neutrino interpretation the derivative fl.. of the 75 
complexion 13 behaves like a torsion vector in the Heisenberg interpretation. 

The relationship between phase and duality rotations for [4N]<2~ electro- 
magnetism is shown by Ludwig's definition of the curvature spinor CP~BCD 
in terms of 2-component spinors (Ludwig, 1970): 

ePABOb = bKAKBKO~5 (2.25) 

where b is a constant. A spinor of type (1, 0), %B, is defined from the KA in 
terms of a duality complexion ~: 

~OAB = K,r -~" (2.26) 

Under a J-phase transformation through 0 the dotted and undotted spinors 
K and ~ are multiplied by exp ( g i0/2), while the duality phase undergoes a 
transformation a --> c, + 0, with the result that ~0aB is phase invariant and has 
no electric charge if the J-phase generates the electromagnetic U(1) gauge 
group. 

3. INTERNAL SYMMETRY 

In this section we consider the more highly symmetric types of T.~ and 
the physical interpretation of the symmetries. The most symmetric of all is 
the vacuum T~, of the type [4T]<t~ in Ptebanski's notation, and the type of 
greatest interest here is the type [T-3S](~. In this case the vierbein analysis 
(2.2) and its relation to the complex structure (2.7) shows that there are three 
linearly independent complex structures differing by S0(3, ~) vierbein rota- 
tions; such a situation is characterized geometrically as an almost quaternionic 
structure (Bonan, 1967; Kraines, 1966; Yano and Ako, 1973; Ishihara, 1974), 
and in the following we make use of a number of properties proven in these 
references. 

An almost quaternionic structure in four dimensions can also be defined 
as a reduction of the GL(4, I~) group of general linear frame transformations 
to GL(1, H) or as a manifold with local holonomy group Sp(1) x Sp(1). The 
quaternionic structure is integrable if in every coordinate neighborhood the 
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three linearly independent complex structures J1, J2, and J3 can be expressed in 
the canonical form (3.1) below: 

li ~176 1o0 il [i l~176176 o~ 
o o (3.1) 

J 3 =  o o 

- 1  0 

If the almost quaternionic structure is not integrable, but admits one inte- 
grabte section, the complex structure associated with the light cones, then 
for this case nonintegrability is equivalent to the existence of a nontrivial 
S0(3, ~) vierbein gauge field which is interpreted geometrically as torsion. 
Integrability has the very important physical limitation that the Ricci tensor, 
and hence also T,~, must vanish identically, so for the present classification 
it is the nonintegrable case that is of interest. The integrable case has, how- 
ever, been of great interest recently in the study of instanton solutions of the 
self-dual Yang-Mills field equations (Belavin et al., 1975), for which T.~ is 
necessarily zero, and their topological classification; and a brief comparison 
of this with the eigenvalue classification of the conformal curvature is given 
later in this section. The one remaining point of major physical significance 
is that unlike the case of a single complex structure which commutes with 
SL(2, C) Lorentz spinor transformations, the almost quaternionic structure 
cannot be defined in a Lorentz frame covariant manner and commutes only 
with S0(3, ~) rotations so that any physical symmetry defined in terms of 
quaternionic phase transformation must be broken, 

For T,~ type [T-3S](2~ the trace-free part U,~ was shown by Plebanski 
to be invariant under U(3) generalized duality rotations, and we consider 
these in relation to the Sp(1) x Sp(1) group ofquaternionic phase transforma- 
tions and vierbein rotations. Using an orthonormal basis for the space of 
symmetric spinors of types (1, 0) and (0, 1) the Penrose spinor q~ABOD can be 
expressed in terms of the trace-free eigenvalues as 

_ 2 2 1 2 2 1 
~ABOb = �89 S3)(q]Bq~b + qABqOb) + �89 -- S1)(qABqcb + qABqOb) 

+ (T + S3)(q.]~q~'b) (3.2) 
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where the eigenvalues are subject to the trace-free condition 

3 

T =  ~ S ~ = 0  
/ = l  

1 
q ~  = 2~/2 (XAXB -- 'a~B) qa2B = ~ (KAKB + 'a'B) (3.3) 

qA3B = ~ ('qA'B -- ~AXB) 

where (KA, ~,) is a 2-component spinor basis associated with the null tetrad 
(2.7). For [T-3S]~2~ each S~ --- S and only the diagonal terms remain. By virtue 
of the manifest Hermiticity of qbAB0b it is invariant under the J-phase rotations 
where J is the complex structure used to define the spinors. The space of 
symmetric spinors is isomorphic to the [R ~ space of bivectors V ~ A V b, 
0 ~ a, b ~< 3 on which the absolute involution tensor ,z k, 1 ~< k, l~< 6 
defined by 

,k',z m = - 3k m (3.4) 

(,2 + 1)3 = 0 (3.5) 

determines a complex structure which generates the duality transformations. 
A nondegenerate Hermitian form of maximal rank is invariant under 
GL(3, C ) n  0(3, 3 ) =  U(3) transformations of R 6 and this is Plebanski's 
group of generalized duality rotations. The S0(3, ~) vierbein group acts on 
both {V ~ /x V ~} and {V ~ /x VJ}, 1 ~< i , j  ~< 3, so that the S0(3, C) subgroup 
of U(3) consists of left- and right-handed S0(3, R) transformations, where 
V ~ A V b are the eigenvectors of the tensor analog of the Weyl-like spinor 

V aBcD =- ~b i~S(AB~bi~CD) (3.6) 

and the U(3) group of the Weyl spinor was suggested by Sarfatti (1975) as 
the origin of internal symmetry. The diagonal elements are the changes of 
complexion in the three orthogonal electrodynamics defined by (2.11), the 
product of all three being generated by ,~, which is the unit operation in 
U(3). Electric charge is assumed to be an eigenvalue of the operator J, and 
as such is not a member of this U(3) group, although it does generate a 
change of complexion according to the definition in (2.26). Denoting a bi- 
vector basis of R 6 by {E, HI the action of each complex tensor J~ of (3.1) is 
a map: 

{E~, H~} ~ {E~, Ha} 

{Eb, Hb} ~ {-- Hb, -- Eb} (3.7) 

l<<,av~b<~3 
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The tensor J~ evidently does not act as a complex structure on RG; instead this 
role is played by the involution tensor Ez k, that corresponds to the Hodge 
duality operator on R ~. Each complex structure J~ can be used to define a 
4-form dz ~ A dz 2 A dY? A d2 2, and hence a duality operator, but since in 
four dimensions there is only one class of 4-forms, there is essentially only 
one such operator. The three generalized duality operators which are diagonal 
in U(3) can be expressed in local coordinates by 

~ (x ~ A x0  ~ - (x  ~ A x 0  a(x  ~ A x 9  a(x  ~ A x0'  

The three linearly independent pairs of bivectors, (x ~ A x B) and (x r A x0, 
can be chosen so as to define the planes of phase and hyperbolic phase rota- 
tions generated by each of the three complex structures. The other generators 
of U(3) are the S0(3 ,  C) transformations of R 6 induced by the vierbein rota- 
tions, so the group does not contain any elements induced by pure Lorentz 
boosts, and its Lorentz-covariant generalization is just the 0(3, 3) symmetry 
group for U.v = 0, with Euclidean analog 0(6). In relation to the unitary 
groups of hadron physics, it may be noted that the spinor group of the latter 
is SU(4), whose fundamental representation is spanned by null hyperplanes 
of •6. 

The full symmetry of the vacuum includes Lorentz transformations on 
spaces of opposite 4-orientation, so we consider how this is affected by the 
curvature: the 4-orientation of space-time can be defined by a nonvanishing 
4-form, and in terms of the curvature, the Euler density (32~r 2 ) - 1 ~,~,~ ,~ %v~an~ 
A Y2a v and the Pontryagin density -(87r 2)- ~ Tr ~2 define 4-forms, although 
not necessarily nonvanishing, where 

f ~  = ~ R~.v dx" A dx ~ 
~,Y~O 

These two quantities, whose integrals are topological invariants, have 
been recently used to define and classify instanton solutions to the self-dual 
Yang-Mills field equations (Belavin et al., 1975), which according to the 
analysis of the previous section arise from an essentially torsional connection 
associated with quaternionic phase invariance. Here we point out that Euler 
and Pontryagin densities from the symmetric part of the connection can 
readily be calculated from the eigenvectors of the curvature of an Einstein 
space (Petrov, 1969). Using the expressions 
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for the bivector curvature Rab, 1 ~< a, b ~< 6, of Euclideanized and Petrov 
type 1 pseudo-Riemannian spaces with 

where 

M =  a2 and N =  0 /32 

0 ~3 0 0 t3a 

3 3 

2 ~ = -+R, 2 = o 
i = l  i=l 

and R is the scalar curvature, the Euler and Pontryagin densities for the two 
cases are, respectively, 

8 3 

(4~.2)-, ~ (a2 + ~2) and rr -2 ~ c~,fl, 
t = 1  ~=I 

and 
3 

(47r 2)-1 ~ (~2 + /3,2) 
i = 1  

and 0 

Imposing the condition that the curvature bivectors be S0(3, R) invariant 
entails the requirement 

~ = - ( 1 2 ) - 1 R ,  /3~ = 0 1 ~< i ~< 3 

and also eliminates consideration of Petrov types II and III for pseudo- 
Riemannian space. Self-duality of the Yang-Mills field equations requires 
integrability of the quaternionic structure and hence vanishing of the con- 
formal curvature of the symmetric connection as well as of the Ricci curva- 
ture. For the almost quaternionic case instanton solutions do not exist, and in 
general the U.v-free curvature is not expressible in the canonical form above 
in terms of the bivectors constructed from the eigenvectors of U.v, so that no 
neat topological classification of massive Yang-Mills fields is possible in 
general, but there is one exception to this, namely where the Weyl spinor 
WABCD is algebraically dependent on U.~ through a relation like (3.6): 

~- vv RS(AB'*'RS) (3.8) 

where w is a scalar. In this special case the Euler and Pontryagin densities 
can be obtained from the eigenvalues of the almost quaternionic Ricci tensor. 
Unlike the conformal curvature, Rab, 1 ~< a, b ~< 6, can be fully diagonalized 
in terms of the basis {V ~ /x V ~, V ~ /x W} of bivectors constructed from the 
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eigenvectors V" (0 ~ tz ~< 3) of the Ricci curvature tensor, and for the almost 
quaternionic case this gives a curvature matrix 

[0 0] 
with M = (�89189 and L = - ( � 8 9  +-~iR)Ia, where Ia is the unit 
matrix, for the Euclidean case and 

for the Minkowski space, so the Pontryagin density of the symmetric part of 
the connection is zero in each case. 

4. KOSTANT QUANTIZATION 

This section considers how J-phase and quaternionic phase transforma- 
tions are related to geometric quantization. Firstly in the finite-dimensional 
analog of Segal's method using the pseudo-Riemannian metric and the 
complex structure J, J-phase transformations preserve commutation and 
anticommutation relations so that J charge is simultaneously specifiable with 
the spin quanta of the Segal-type scheme. If the metric is Hermitian with 
respect to a quaternionic structure, this argument extends to the quaternionic 
transformations Sp(1) x Sp(1). This type of quantization is of a static 
character and to obtain a dynamical quantization it is necessary to use the 
Kostant method based on the Ricci curvature instead. 

The Kostant theory here quantizes fluctuations of real scalar fields in 
terms of the Ricci curvature form of the line bundle with structure group 
GL(2, C)/SL(2, C) chosen so that its Ricci form coincides with that derived 
from the Ricci curvature of space-time including the torsional contributions 
compatible with integrability of aT. This quantization is characterized by the 
cohomology class of the Ricci 2-form, so that the Segal-type quantization is 
only equivalent to the Kostant type if the Ricci and Kfihler forms R(X, JY)  
and g(X, JY)  are cohomologically equivalent, i.e., if U,~ is a pure divergence, 
and nontrivial dynamics are associated with the breakdown of this condition. 

The Kostant theory requires the existence of locally Hamiltonian fields 
that are defined as vector fields X on the space-time M such that their Lie 
derivatives of the Ricci form R(V, JY)  vanish: 

~xR(V, JY)  = 0 (4.1) 

This requires ~ x V =  0 = ~ x Y  if symmetries of the Ricci form are to 
coincide with those of the Ricci tensor. Since the Lie derivative ~x  can be 
expressed as (4.2) 

c~x = d.ix + ix.d (4.2) 
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where d denotes exterior derivation and ix contraction with respect to X, 
it follows, using the Bianchi identity, that (4.1) is satisfied if ix[R(V, J(Y))] 
is a closed 1-form dg, and it is the map 9 ~ X, satisfying the latter condition 
which is the basis of the Kostant quantization. 

A real valued scalar function 9 on M is said to be prequantized by the 
map 

9 ~-> ~ (4.3) 

where 3~ acts by covariant derivation on sections s ~ P(L), where P(L) 
denotes the space of sections of the line bundle L on M with connection V, by 

3~s = (Vx~ - 27ri9)s (4.4) 

where X, is a locally Hamiltonian field related as above to 9, and the second 
term in (4.4) is included to eliminate the curvature and so ensure that (4.3) 
can lead to a Lie algebra homomorphism, but also leads to the representation 
being reducible. To avoid this, a polarization F~(M) of the tangent space 
T~(M) is chosen so that the sections s ~ P(L) are covariant constant with 
respect to directions in F~(M) at each x e M. 

For the present application there is a natural choice of polarization, the 
Kiihler polarization, based on the subspace Fx and F~ of holomorphic and 
antiholomorphic vector fields 

R(X,, X,) = 0 = R(X~, X~) 
(4.5) 

R(X~, y,) # o 
where 

X,, X,  ~ F~(M); X,, X, ~ Fx(M); 9, r ~ I'(L) 

To make the space of sections F(L) into a pre-Hilbert space, it is necessary 
to impose a square integrability condition, and this depends on introducing a 
volume element vx on Fx(M) and considering wavefunctions of the local form 

r = 9~(vx) 1/2, 9 e F(L) (4.6) 

and consistent treatment of the sign ambiguity requires use of a double- 
valued covering ML(2, C) of GL(2, C) subject to a global cohomology 
condition H2(M, Z 2 ) =  0, which in this particular case is precisely the 
requirement for a consistent definition of spinors. The Hilbert space is then 
the completion of the pre-Hilbert space of square integrable functions W 
where 

W = {~b ~ P(L @ Lr)lVxr = 0}VXe F~(M) (4.7) 

where L p is the bundle of 1/2-forms associated with the volume element of  F. 
For the present case this is just the space of square integrable holomorphic 
sections of type (2.0), and using the complex structure J to define a 4-form 



Geometric Quantization and Internal Symmetry 209 

dZ ~ A d Z  ~ /x dZ  2 A d Z  2 and hence a duality operator, it is mapped onto the 
antiparticle space of antiholomorphic forms of type (0, 2) by this operator. 
Inclusion of the volume element requires also that the prequantum operator 
3~ in (4.3) be replaced by g~, where 

~ = 3~o + 2'x~V~ 12 (4.8) 

In this application the scalar fields ~ contribute to the scale of space-time, 
and the aim is to see what forms of qo are compatible with various symmetries 
of the Ricci form. Any vector field X on M can be expanded locally in a 
particular coordinate system without loss of generality as (Kobayashi, 1972) 

3 

X = ~.. 2t" O/~x~ (4.9) 
, u = 0  

where 

A . =  k ~=0 ~ ~ a~l ..... ,~x"l. . .x"~ (4.10) 
/ / 1 , . . , , / / k  = 0 

The vector field X generates an automorphism of a kth-order G structure if 
for each fixed set (/x2 . . . .  ,/~k) the element a~" 1 ..... ,~ belongs to the Lie algebra 
G of G. The Ricci curvature tensor of a symmetric connection can in this way 
be represented as a third-order structure, but it is more convenient to consider 
the (ordinary) first-order G-structures in relation to the symmetries mentioned 
above. In particular, holomorphic vector fields preserve the gl(2, C) structure 
J so that in (4.10) they have a~ ~ GL(2, C) and using the GL(4, R) expression 
for J, the J-phase transformations themselves are generated by the vector 
field 

5=oi z ~ - ~ (4.11) 

The Ricci form is J invariant and to find what (4.11) can be used to quantize 
we contract the vector field (4.11) with the simple Ricci form, that for an 
Einstein space given by Y~= ~ �89 ~ A dZ~. This gives 

o r  

~ R  
d~ = ~ (Z'  d Z  + 25 dZ')  

i = 0  

(4.i2) 

= + (4 .13 )  
i = O  

This corresponds formally to a harmonic oscillator whose Hamiltonian rr is 
quantized by using expression (4.11) in (4.8) for X, and as the Kostant 
quantization of the harmonic oscillator has previously been investigated 
(Simms and Woodhouse, 1976) it is not considered here except to point out 
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that the spectrum is formally that of a vibrating string and that here its 
configuration space is a 2-dimensional subspace of space-time. 

For an integrable quaternionic case the Ricci form necessarily vanishes, 
but the three K/ihler forms g(X, J~ Y) can each be used to define a Kostant 
quantization as above leading to three linearly independent harmonic 
oscillators rotated into one another by the S0(3, ~) vierbein transformations, 
i.e., a 3-dimensional harmonic oscillator. Such a system has states classifiable 
in terms of SU(3) representations, but not coinciding with the hadronic 
SU(3) spectrum. 

The simplest non-Einstein space has U,~ of type [T-3S](~ and a Ricci 
form differing from the Einstein case by the inequality of the coefficients RI~ 
and R25, while the incompletely diagonalizable cases [2N-S~-$2](~ and 
[ 3 N -  S](4~ have terms R~jdz~ /x d~ s for i r j that destroy the simple 
harmonic oscillator interpretation. This situation will be considered in detail 
elsewhere in relation to the theory of strings and of minimal surfaces. 

5. DISCUSSION 

The basic conclusion of this paper is that the geometry of space-time 
contains far more information of probable relevance to physics than just 
a classical approximation to the gravitational field, but that physically inter- 
esting phenomena are associated with very specialized geometric situations. 

The conclusions which can be drawn are of a qualitative nature: Firstly, 
comparison of the Rainich theory of electromagnetism with the gauge 
approach showed that the [2T-2S](2) and [4N](2) energy momenta were 
associated, respectively, with symmetric, and antisymmetric parts of the 
connection, and also with parity conserving and nonconserving 4- and 2- 
component neutrinos by the arguments of Inomata and McKinley, and that 
the torsional gauge group is U(1) x SO(I, 3). Secondly, extension of these 
arguments to [T-3S](2~ leads to an SO(3, R) group of quaternionic phase 
transformations accompanied by SO(3, R) vierbein transformations with the 
condition that the SO(3, IR) torsional gauge field must be nonzero if the Ricci 
curvature, and hence also the mass, is not to vanish identically. The maximal 
symmetry group is that of the vacuum curvature which consists of 0(3, 3) 
transformations on the IR 6 space of bivectors, with Plebanski's U(3) as a 
subgroup preserving the complex structure associated with duality rotations, 
and characteristic breaking both by the U,~ types and also by the conformal 
part of the curvature. Since the 0(3 3) group consists in part of chiral trans- 
formations it seems clear that this geometric formalism is not capable of 
describing all known quark flavors, let alone color unless the latter is regarded 
as a magnetic SU(3). The positive achievement of this work is to show how 
the phase invariance of the scalar curvature leads to a formal harmonic 
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oscillator or string model, and for quaternionic phase transformations to a 
three-dimensional harmonic oscillator or a massless 3-string model. 

The basic distinction between this and conventional quantum field theory 
is that this, and arguably any theory of quantum gravity where the curvature 
of the light cone is built into the definition of the first graviton, is an attempt 
to produce a nonvacuum (and hence nonmaximal in the sense of rings of W* 
operators of the group algebra, or also of not giving a complete commuting 
set of observables) quantization. In Lagrangian quantum field theory an 
approach to nonvacuum quantization is made by including Goldstone and 
Higgs particles in a modified vacuum, and for the present theory J would be 
represented by Goldstone particles for the breaking of GL(4, ~) to GL(2, C), 
and if the Lagrangian density is identified with the Euler density, then going 
from T~ = 0 to T,v r 0 is represented by adding to the Lagrangian terms 
which are variously quadratic or quartic in the eigenvectors of T,~ which, 
therefore, bear a slight resemblance to Higgs particles. The latter analogy is 
clearly not exact, and zero-mass fields are themselves a source of symmetry 
breaking for Plebanski's U(3). 

This work raises numerous questions, some of which will be investigated 
elsewhere, notably the use of the Ricci form to describe the dynamics of 
minimal surfaces or strings, and a modified theory of weak and electro- 
magnetic interactions based on the most general torsional connection. In 
regard to the latter, the recent renormalization group argument that coupling 
constants should become equal at short distances weakens the main coupling 
constant argument against the interpretation of torsion as the weak inter- 
actions, although at the expense of requiring some form of geometric 
quantization. 
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